DEPARTMENT OF THE INTERIOR DEPARTMENT OF THE INTERIOR TO ACCOMPANY UNITED STATES GEOLOGICAL SURVEY WRI REPORT 83-4121-D MAP SHOWING OUTCROPS AND LITHOLOGY OF INTRUSIVE ROCKS, BASIN AND RANGE PROVINCE AND VICINITY, TRANS-PECOS TEXAS Compiled by Christopher D. Henry and Gail L. Fisher, Texas Bureau of Economic Geology #### INTRODUCTION This map report is one of a series of geologic and hydrologic maps covering all or parts of the States within the Basin and Range province of the western United States, resulting from work under the U.S. Geological Survey's program for geologic and hydrologic evaluation of the Basin and Range province to identify potentially suitable regions for future study relative to isolation of high-level nuclear waste (Bedinger, Sargent, and Reed, 1984). This map report on the intrusive rocks of Trans-Pecos Texas was prepared from published maps and reports utilizing the project guidelines of Sargent and Bedinger (1984). On the map the outcrops of igneous intrusive rocks are grouped in numbered county areas, and in the Description of Map Units, the geologic, and, if available, radiometric age, type of intrusive body, lithologic composition, identity of the geologic units intruded, and the sources of data on the rocks in each county area are discussed. The intrusive igneous rocks of the Trans-Pecos region are alkaline in character. The rocks in the western part are largely metaluminous and those in the eastern part, peralkaline and feldspathoidal (Barker, 1977, 1979). The intrusions include both those related to volcanic calderas and those not related. The former are principally resurgent domes and ring-fracture intrusions associated with the large calderas shown on the map. The resurgent domes probably are offshoots of magma chambers underlying the calderas. The non-caldera-related intrusions include concordant and semiconcordant bodies, such as sills, laccoliths, and trap-door laccoliths, and non-concordant bodies, such as stocks and dikes. Some stocks may actually be laccoliths, but the exact shape of the bodies is not readily determined on outcrop. All but two of the intrusions in the Trans-Pecos region are of Tertiary age. The Red Bluff Granite (Thomann, 1981) in the Franklin Mountains and small outcrops of granite on the south flanks of the Hueco Mountains are of Precambrian age. The silicic, igneous rocks were intruded mainly during the Oligocene, between 38 and 28 million years ago (Henry and McDowell, 1982). Intrusion of mafic rocks also occurred principally within the same time period, but the activity continued on a diminishing scale into the Miocene. ### DESCRIPTION OF MAP UNITS | County-
area
number | Map
symbol | Latitude
(North)
Longitude
(West) | radiometric age | Intrusive type,
lithology, and
comments | References
for
county area | |---------------------------|---------------|---|--|--|----------------------------------| | | | | MAP SHE
(Part of Van Horn | | | | ** | | | CULBERSON C | OUNTY (C) | | | C-1 | Ts | 31 [°] 26'
104 [°] 54' | Oligocene 36.7±0.4, 36.2±0.4 m.y. (C.D. Henry, Texas Bureau of Economic Geology, unpublished data) | Stock, syenite, intruded
Permian Hueco Limestone;
considerable hydrothermal
alteration. | King, 1965;
Sharp, 1979 | | C-2 | Tqm | 31 [°] 26'
104 [°] 53' | Oligocene 34.5±0.5 m.y. (C.D. Henry, unpublished data) | Stock, breccia pipe,
breccia-quartz monzonite,
intruded Permian Hueco
Limestone; considerable
hydrothermal alteration. | King, 1965;
Sharp, 1979 | | C-3 | Tb | 31 [°] 00'
104 [°] 54' | Tertiary | Sill, basalt, intruded
between schists of Pre-
cambrian Carrizo Mountain
Group and Precambrian(?)
Van Horn Sandstone. | King, 1965 | | | | | EL PASO CO | UNTY (E) | | | E-1 | Ts | 31 ⁰ 53'
106 ⁰ 34' | Tertiary | Stock, syenite, surrounded
by Quaternary and Tertiary
basin fill. | Hoffer, 1970 | | E-2 | Ts | 31 ⁰ 52'
106 ⁰ 33' | Tertiary | Stock, syenite, intruded Cretaceous sedimentary rocks. | Hoffer, 1970 | | E-3 | Ts | 31°47'
106°30' | Tertiary 48.3±2.3 m.y. | Stock, syenite, intruded
Cretaceous Boquillas
Formation. | Hoffer, 1970 | | E-4 | Ts | 31°58'
106°05' | Tertiary | Stock, syenite, mostly
surrounded by alluvium;
roof pendant of Permian
Hueco Limestone. | Wise, 1977 | | E-5 | Tt | 31 [°] 57'
106 [°] 04' | Tertiary | Stock, trachyte, sur-
rounded by alluvium. | Wise, 1977 | | E-6 | Ts | 31°59'
106°03' | Tertiary | Sill, syenite; rock above
sill is Permian Hueco
Limestone, below is
Pennsylvanian Magdalena
Formation. | Wise, 1977 | | E-7 | Ts | 31°58'
106°02' | Tertiary | Sill-laccolith, syenite,
rock above sill is Permian
Hueco Limestone, below is
Pennsylvanian Magdalena
Formation. | Wise, 1977 | | E-8 | Ts | 31°55'
106°03' | Tertiary ~36 m.y. | Stock, syenite, surrounded by alluvium. | Wise, 1977 | | E-9 | Ts | 31 [°] 55'
106 [°] 01' | Tertiary | Sill, syenite; rock above sill is Permian Hueco Limestone, below Pennsylvanian Magdalena Formation. | Wise, 1977 | |------|-----|---|---|---|--| | E-10 | Ts | 31 [°] 55'
106 [°] 29' | Precambrian
~950 m.y. | Stock (Red Bluff Granite), intrusive equivalent of rhyolites of Thunder-bird Group, which it intrudes along with Precambrian marble, quartzite, and basalt. | Denison and
Hetherington,
1969;
Thomann, 1981 | | | | | HUDSPETH C | OUNTY (H) | | | H-1 | Ts | 31 ⁰ 59'
105 ⁰ 59' | Tertiary | Laccolith, syenite,
intruded Permian Hueco
Limestone. | Wise, 1977 | | н-2 | Ts | 31 [°] 57'
105 [°] 58' | Tertiary 34.3±0.5 m.y. (F.W. McDowell, University of Texas, Austin, unpublished data) | Stock, syenite,
intruded Permian Hueco
Limestone. | Wise, 1977 | | H-3 | Ts | 31 [°] 54'
105°58' | Tertiary | Sill, syenite, intruded
Permian Hueco Limestone. | Wise, 1977 | | H-4 | Tfs | 32 [°] 00'
105 [°] 33' | Tertiary | Laccolith, nepheline syenite, intruded Permian and Cretaceous rocks. | Barker and others, 1977 | | H-5 | Tfs | 31 [°] 59'
105 [°] 31' | Tertiary | Sills, nepheline syenite, intruded Permian and Cretaceous sedimentary rocks. | Barker and
others, 1977 | | H-6 | Tfs | 31 [°] 55'
105 [°] 32' | Tertiary | Sill, nepheline syenite,
intruded Permian Hueco
Limestone. | Barker and others, 1977 | | H-7 | Tfs | 31 [°] 5 4'
105 [°] 31' | Tertiary | Sill-discordant sheet,
nepheline syenite,
intruded Permian Hueco
Limestone and Cretaceous
Washita Group. | Barker and others, 1977 | | H-8 | Tfs | 31 [°] 52'
105 [°] 27' | Tertiary | Discordant sheet,
nepheline syenite,
intruded Permian Hueco
Limestone and Cretaceous
Washita Group. | Barker and others, 1977 | | н-9 | Ts | 31 [°] 52'
105 [°] 26' | Oligocene
34.9±0.6,
35.1±0.6,
36.1±0.6 m.y. | Dome, syenite, intruded
Permian Hueco Limestone,
and Cretaceous Washita
Group. | Barker and others, 1977 | | H-10 | Tfs | 31 [°] 51'
105°26' | Tertiary | Discordant sheet,
nepheline syenite,
intruded Permian Hueco
Limestone. | Barker and others, 1977 | | н-11 | Tfs | 31 [°] 53'
105°24' | Tertiary | Discordant sheet,
nepheline syenite,
intruded Permian Hueco
Limestone. | Barker and
others, 1977 | | H-12 | Tfs | 31 45'
105°28' | Tertiary | Cone sheet, nepheline
syenite, intruded Permian
Hueco Limestone. | Barker and others, 1977 | |------|-----|---|--|--|------------------------------| | H-13 | p€g | 31°40'
105°56' | Precambrian | Granite, overlain by Bliss
Sandstone; host rock
unknown. | Barnes, 1968 | | H-14 | Tt | 31 [°] 39'
105 [°] 18' | Tertiary | Discordant sheet,
trachyte, intruded Perm-
ian Hueco Limestone and
Cretaceous Washita Group. | Barker and
others, 1977 | | H-15 | Tfs | 31 [°] 35'
105 [°] 10' | Tertiary | Discordant sheet,
nepheline syenite,
intruded Permian Hueco
Limestone and Cretaceous
Washita Group. | Barker and
other, 1977 | | H-16 | Ts | 31 [°] 31'
105°36' | Tertiary | Sill, syenite, intruded
Cretaceous Cox Sandstone. | Albritton and Smith, 1965 | | H-17 | Ts | 31 ⁰ 20'
105 ⁰ 34' | Tertiary | Dikes-sills, syenite,
intruded Cretaceous Cox
Sandstone and Finlay
Limestone. | Albritton and Smith, 1965 | | H-18 | Tr | 31 [°] 17'
105°27' | Tertiary | Laccoliths, rhyolite,
intruded shale and
limestone of Cretaceous
Washita Group. | Albritton and
Smith, 1965 | | H-19 | Tr | 31°17'
105°23' | Tertiary | Laccolith, rhyolite,
intruded Cretaceous
Campagrande Formation. | Albritton and Smith, 1965 | | H-20 | Tr | 31 [°] 15'
105°26' | Oligocene
36.1±0.6 m.y.
(C.D. Henry,
unpublished
data) | Laccolith, rhyolite, intruded shale and lime-stone of Cretaceous Washita Group. | Albritton and
Smith, 1965 | | H-21 | Tt | 31°11'
105°22' | Tertiary | Dikes and sills, trachyte, intruded shale and lime-
stone of Cretaceous Cox
Sandstone and Finlay
Limestone. | Albritton and Smith, 1965 | | H-22 | Tqm | 31°12'
105°29' | Oligocene
35.4±0.6
(F.W. McDowell,
unpublished
data) | Stock, quartz monzonite, intruded Cretaceous
sedi-
mentary rocks and Tertiary lava flows and ash-flow-
tuff. | Albritton and Smith, 1965 | | H-23 | Tqm | 31°07'
105°30' | Tertiary | Ring dike, quartz monz-
onite, intruded Cretaceous
sedimentary rocks and
Tertiary volcanic rocks. | Albritton and
Smith, 1965 | MAP SHEET 2 (Part of Fort Stockton and Marfa Sheets) | | BREWSTER COUNTY (B) | | | | | | | |-----|---------------------|---|----------|---|-----------------------|--|--| | B-1 | Tpt | 30°19'
103°45' | Tertiary | Dike, peralkaline
trachyte, intruded
Tertiary volcanic rocks. | Parker, 1976 | | | | B-2 | Tu | 30°20'
103° 44' | Tertiary | Stock?, intruded Decie
Formation (Tertiary),
lava flows, and minor
ash-flow tuff. | Parker, 1976,
1983 | | | | B-3 | Tpr | 30 ⁰ 19'
103 ⁰ 43' | Tertiary | Stock, peralkaline rhyolite, intruded lava flows and ash-flow tuff of Decie Formation (Tertiary). | Parker, 1976,
1983 | | | | B-4 | Tpt | 30 [°] 20'
103 [°] 42' | Tertiary | Stock, peralkaline trachyte, intruded lava flows, minor ash-flow tuff of Decie Formation (Tertiary). | Parker, 1976,
1983 | |------|-----|---|----------|--|---------------------------------| | B-5 | Tu | 30°21'
103°39' | Tertiary | Uncertain intrusive type,
intruded Tertiary Crossen
Trachyte lava flow. | Parker, 1976 | | B-6 | Tfs | 30°18'
103°46' | Tertiary | Stock, feldspathoidal
syenite, intruded Tertiary
volcanic rocks. | Parker, 1976 | | B-7 | Tfs | 30°17'
103°43' | Tertiary | Laccolith (trap-door)
feldspathoidal syenite,
intruded Tertiary
volcanic rocks. | Parker, 1976 | | B-8 | Tpt | 30°18'
103°40' | Tertiary | Stock, peralkaline
trachyte, intruded
Tertiary volcanic rocks. | Parker, 1976 | | B-9 | Ts | 30°13'
103° 44 ' | Tertiary | Sill, syenite, intruded tuffaceous sediments of Duff Formation (Tertiary). | McAnulty, 1955 | | B-10 | Tfs | 30 ⁰ 14'
103 ⁰ 39' | Tertiary | Laccolith (trap-door),
feldspathoidal syenite,
intruded Tertiary volcanic
rocks, mostly lava flows. | Barnes, 1982;
McAnulty, 1955 | | B-11 | Tfs | 30 ⁰ 13'
103 ⁰ 38' | Tertiary | Sill, feldspathoidal
syenite, intruded Tertiary
volcanic rocks, mostly
lava flows. | McAnulty, 1955 | | B-12 | Ts | 30 ⁰ 08'
103 ⁰ 40' | Tertiary | Stock-laccolith, syenite, intruded Maxon Sandstone of Trinity Group, and Fredericksburg, and Washita Groups all of Cretaceous age and Tertiary volcanic rocks. | McAnulty, 1955 | | B-13 | Tfs | 30°31'
103°31' | Tertiary | Sill, feldspathoidal
syenite, intruded tuff-
aceous sediments of
Tertiary Pruett Formation. | McAnulty, 1955 | | B-14 | Tu | 30 ⁰ 17'
103 ⁰ 38' | Tertiary | Lithology unknown,
intruded Tertiary volcanic
rocks, mostly lava flows. | Parker, 1976 | | B-15 | Tt | 30 ⁰ 18'
103 ⁰ 37' | Tertiary | Trachyte?, intruded
Tertiary volcanic rocks,
mostly lava flows. | Parker, 1976 | | B-16 | Tu | 30°19'
103°36' | Tertiary | Lithology unknown,
intruded Tertiary volcanic
rocks, mostly lava flows. | Parker, 1976 | | B-17 | Ts | 30°21'
103°30' | Tertiary | Stock-breccia pipe in western outcrops, syenite, intruded Permian Capitan Limestone. | Parker, 1976 | | B-18 | Tu | 30°18'
103°32' | Tertiary | Lithology unknown,
intruded Cretaceous
Washita Group. | Barnes, 1982 | | B-19 | Tt | 30°19'
103°30' | Tertiary | Sill?, trachyte, intruded
Permian Word Formation. | King, 1937 | | B-20 | Ts | 30°18'
103°31' | Tertiary | Stock, syenite, intruded
Permian Cathedral Mountain
Formation. | King, 1937 | | B-21 | Tu | 30 ⁰ 16' | Mortion | Tibbology unknown | Downer 1000 | |----------|------------|---|----------|--|-----------------| | B-21 | Tu | 103034 | Tertiary | Lithology unknown. | Barnes, 1982 | | B-22 | Tb | 30°08'
103°28' | Tertiary | Laccolith, basalt,
intruded Permian Capitan
Limestone. | King, 1937 | | B-23 | Ts | 30°22'
103°12' | Tertiary | Syenite?, intruded between
Neal Ranch and Skinner
Ranch Formations of
Permian age. | King, 1937 | | B-24 | Ts | 30°18'
103°16' | Tertiary | Stock, syenite, surrounded by alluvium. | King, 1937 | | B-25 | Tpt | 30°03
103°04' | Tertiary | Dike, peralkaline
trachyte, intruded
Pennsylvanian and
Mississippian Tesnus
Formation. | King, 1937 | | B-26 | Tpr | 30 ⁰ 02
103 ⁰ 05' | Tertiary | Dike, peralkaline rhyolite, intruded Pennsylvanian and Mississippian Tesnus Formation. | King, 1937 | | | | | CULBER | SON COUNTY (C) | | | C-1 | Tr | 30°50'
104°53' | Tertiary | Stock, rhyolite, intruded
Tertiary tuffaceous
sediments and lava flows. | Twiss, 1959 | | C-2 | Tt | 30 ⁰ 50'
104 ⁰ 50' | Tertiary | Stock, trachyte, intruded
Cretaceous Cox Sandstone
and Finlay Limestone. | Twiss, 1959 | | C-3 | Tr | 30 ⁰ 48'
104 ⁰ 52' | Tertiary | Stock, rhyolite, intruded
Cretaceous Cox Sandstone
and Finlay Limestone. | Twiss, 1959 | | C-4 | Tqm,
Tt | 30 ⁰ 55'
104 ⁰ 43' | Tertiary | Stocks, quartz-monzonite,
and trachyte intruded
Tertiary tuffaceous
sediments and lava flows. | Hay-Roe, 1957 | | C-5 | Tr | 30°49'
104°41' | Tertiary | Stock, rhyolite, intruded
Tertiary tuffaceous
sediments and lava flows. | Hay-Roe, 1957 | | <u> </u> | | | HUDSPE | TH COUNTY (H) | | | H-1 | Ts | 30 ⁰ 55'
105 ⁰ 05' | Tertiary | Stock (resurgent dome), syenite, intruded Tertiary lava flows and ash-flow tuff. | Underwood, 1963 | | H-2 | Tr | 30 ⁰ 57'
105 ⁰ 04' | Tertiary | Stock, rhyolite, intruded Cretaceous limestone and shale. | Underwood, 1963 | | H-3 | Tr | 30 ⁰ 51'
105 ⁰ 00' | Tertiary | Stock, rhyolite, intruded Cretaceous limestone and shale. | Underwood, 1963 | | | | | JEFF DAV | VIS COUNTY (JD) | | | JD-1 | Tu | 31 ⁰ 00'
103 ⁰ 57' | Tertiary | Lithology, unknown,
intruded Tertiary
volcanic rocks. | Barnes, 1982 | | JD-2 | Tpt | 30 [°] 55'
103 [°] 54' | Tertiary | Laccoliths, peralkaline
trachyte, intruded
Tertiary tuffaceous sedi-
ments and lava flows. | Barnes, 1982 | |-------|------------|---|----------|---|--------------| | JD-3 | Tpt | 30 [°] 52'
103°48' | Tertiary | Dikes, peralkaline
trachyte, intruded Upper
Cretaceous sedimentary
rocks. | Eifler, 1951 | | JD-4 | Tpt | 30°51'
103°52' | Tertiary | Laccolith, peralkaline trachyte, surrounded by alluvium. | Barnes, 1982 | | JD-5 | Tu | 30°51'
103°53' | Tertiary | Lithology, unknown, intruded Upper Cretaceous sedimentary rocks. | Barnes, 1982 | | JD-6 | Tpt | 30°48'
103°53' | Tertiary | Laccoliths, peralkaline
trachyte, intruded Upper
Cretaceous sedimentary
rocks. | Barnes, 1982 | | JD-7 | Ts | 30 ⁰ 33'
103 ⁰ 45' | Tertiary | Laccolith, syenite,
intruded Tertiary
volcanic rocks, mostly
lava flows. | Smith, 1975 | | JD-8 | Tpr | 30 [°] 33'
103 [°] 46' | Tertiary | Sill, peralkaline
rhyolite, intruded into
Tertiary volcanic rocks,
mostly lava flows. | Smith, 1975 | | JD-9 | Tpr | 30 [°] 32'
103 [°] 51' | Tertiary | Stock, peralkaline
rhyolite, intruded
Tertiary volcanic rocks,
mostly lava flows. | Smith, 1975 | | JD-10 | Tpt | 30°31'
103°50' | Tertiary | Laccolith and dikes,
peralkaline trachyte,
intruded Tertiary
volcanic rocks mostly
lava flows. | Smith, 1975 | | JD-11 | Tpr,
Ts | 30°30'
103°46' | Tertiary | Sill, peralkaline rhyolite; cut by laccolith of syenite, intruded Tertiary volcanic rocks, mostly lava flows. | Smith, 1975 | | JD-12 | Tt | 30 [°] 30'
103 [°] 45' | Tertiary | Trachyte, intruded
Tertiary volcanic rocks,
mostly lava flows. | Smith, 1975 | | JD-13 | Ts | 30°30'
103°56' | Tertiary | Stock, syenite, intruded
Tertiary volcanic rocks,
mostly lava flows. | Gorski, 1970 | | JD-14 | Ts | 30 [°] 29'
103 [°] 56' | Tertiary | Syenite?, intruded
Tertiary volcanic rocks,
mostly lava flows. | Gorski, 1970 | | JD-15 | Tu | 30 [°] 27'
103 [°] 55' | Tertiary | Lithology, unknown,
intruded Tertiary
volcanic rocks, mostly
lava flows. | Gorski, 1970 | | JD-16 | Tpr | 30 ⁰ 26'
103 ⁰ 50' | Tertiary | Stocks, peralkaline
rhyolite, intruded
Tertiary volcanic rocks,
mostly lava flows. | Gorski, 1970 | | JD-17 | Tu | 30 [°] 28'
103°42' | Tertiary | Lithology unknown,
intruded Tertiary
volcanic rocks, mostly
lava flows. | Gorski, 1970 | | JD-18 | Tt | 30 ⁰ 51'
104 ⁰ 33' | Tertiary | Stock, trachyte, intruded
Tertiary volcanic rocks. | Hay-Roe, 1957 | |-------|-----|---|--|--|---------------------------| | JD-19 | Ts | 30°46'
104°32' | Tertiary | Stock, syenite,
surrounded mostly by
alluvium and Cretaceous
Finlay Limestone. | Hay-Roe, 1957 | | JD-20 | Tr | 30°43'
104°34' | Tertiary | Laccoliths (trap-door),
rhyolite, intruded
Tertiary lava flows. | Wightman, 1953 | | JD-21 | Tr | 30°43'
104°31' | Tertiary | Laccolith, rhyolite,
intruded Tertiary
volcanic rocks. | Wightman, 1953 | | JD-22 | Tb | 30°42'
104°47' | Tertiary | Dike, basalt, intruded
Cretaceous Ojinaga
Formation. | Dasch and
others, 1969 | | JD-23 | Tb | 30 [°] 36'
10 4°4 8' | Tertiary
~ 23 m.y. | Stock, basalt, intruded
Tertiary
tuffaceous
sediments. | Dasch and others, 1969 | | JD-24 | Tb | 30 [°] 35'
104°43' | Tertiary | Dike, basalt, intruded
Cretaceous Ojinaga
Formation. | Dasch and others, 1969 | | JD-25 | Tu | 30 ^o 51'
104 ^o 13' | Tertiary | Stock?, lithology un-
known, intruded Tertiary
volcanic rocks, mostly
lava flows. | Anderson, 1968 | | JD-26 | Tfs | 30°40'
104°20' | Tertiary | Laccolith?, feldspathoidal syenite, intruded Tertiary volcanic rocks. | Anderson, 1968 | | JD-27 | Тg | 30°40'
104°14' | Tertiary | Stock-laccolith?, granite, intruded Tertiary volcanic rocks. | Anderson, 1968 | | JD-28 | Тg | 30°32'
104°05' | Tertiary | Stock-laccolith?, granite, intruded Tertiary volcanic rocks. | Anderson, 1968 | | | | | PRESIDIO (| COUNTY (P) | | | P-1 | Tb | 30°33'
104°52' | Tertiary | Sill, basalt, intruded tuffaceous sediments of Vieja Group (Tertiary). | Dasch and others, 1969 | | P-2 | Tb | 30°33'
104°44' | Miocene ~ 19 m.y. | Sill, basalt, intruded
Cretaceous San Carlos
Sandstone. | Dasch and others, 1969 | | P-3 | Tt | 30 [°] 07'
104°34' | Tertiary | Laccolith, trachyte,
intruded Tertiary
tuffaceous sediments. | Amsbury, 1958 | | P-4 | Tr | 30 ⁰ 03'
104 ⁰ 34' | Tertiary | Stocks or laccoliths,
rhyolite, intruded
limestone of Cretaceous
Bluff Mesa Formation. | Amsbury, 1958 | | P-5 | Tr | 30 [°] 01'
104 [°] 30' | Oligocene 35.7±0.8, 34.7±0.8 m.y. (C.D. Henry, unpublished data) | Stocks, rhyolite, intruded Bluff Mesa Formation and Cox Sandstone of Cretaceous age and Tertiary volcanic rocks. | Amsbury, 1958 | | P-6 | Tt | 30 [°] 01'
104 [°] 24' | Tertiary | Stock, trachyte, intruded
Tertiary volcaniclastic
rocks. | Duex and
Henry, 1981 | | | | | | | | | P-7 | Tqm | 30 [°] 02'
104 [°] 21' | Oligocene
36.7±0.6 m.y.
(C.D.Henry,
unpublished
data) | Stock, quartz monzonite, intruded Tertiary ashflow tuff. | Duex and
Henry, 1981 | |------|-----|---|---|--|-------------------------| | P-8 | Tr | 30 [°] 01'
104 [°] 18' | Tertiary | Stock, rhyolite, intruded Cretaceous limestone. | Duex and
Henry, 1981 | | P-9 | Tt | 30 ⁰ 03'
104 ⁰ 18' | Tertiary | Stock, trachyte, intruded
Tertiary lava flows. | Duex and
Henry, 1981 | | P-10 | Tpr | 30 ⁰ 13'
104 ⁰ 19' | Tertiary | Stock, peralkaline
rhyolite intruded
Cretaceous Finlay
Limestone. | Ramsey, 1961 | | P-11 | Ts | 30°18'
103°50' | Tertiary | Stock, syenite, intruded
Tertiary volcanic rocks. | Parker, 1976 | # MAP SHEET 3 (Part of Emory Peak-Presidio Sheet) | | BREWSTER COUNTY (B) | | | | | | | | |-------------|---------------------|---|----------|--|---------------------------|--|--|--| | B-1 | Tb | 29 [°] 50'
103 [°] 35.5' | Tertiary | Sill?, basalt, intruded volcaniclastic rocks, of Pruett Formation (Tertiary). | Goldich and
Elms, 1949 | | | | | B-2 | Ts | 29 [°] 46 '
103 [°] 36 ' | Tertiary | Sill, syenite, intruded
Cretaceous Boquillas
Formation. | Goldich and
Elms, 1949 | | | | | B-3 | Tfs | 29 ⁰ 53'
103 ⁰ 27' | Tertiary | Sill, feldspathoidal
syenite, intruded Cretace-
ous Boquillas Formation. | Eifler, 1943 | | | | | B -4 | Tfs | 29 ⁰ 50'
103 ⁰ 25' | Tertiary | Stock, feldspathoidal syenite, intruded volcanic rocks of Tertiary Pruett Formation. | Eifler, 1943 | | | | | B-5 | Tfs | 29 ⁰ 47'
103 ⁰ 21' | Tertiary | Sill, feldspathoidal
syenite, intruded Cre-
taceous Pen and Boquillas
Formations. | Eifler, 1943 | | | | | B-6 | Tfs | 29 ⁰ 45'
103 ⁰ 20' | Tertiary | Sill, feldspathoidal
syenite, intruded Cre-
taceous Pen, Boquillas,
and Aguja Formations. | Eifler, 1943 | | | | | B-7 | Tfs | 29°43'
103°18' | Tertiary | Sill?, feldspathoidal
syenite. Intruded Cre-
taceous Aguja Formation. | Barnes, 1979a | | | | | B-8 | Tb | 29 [°] 43
103 [°] 23' | Tertiary | Basalt?, intruded Cretace-
ous Boquillas Formation. | Barnes, 1979a | | | | | B -9 | Тb | 29 ⁰ 39'
103 ⁰ 23' | Tertiary | Sill, basalt, intruded
Cretaceous Boquillas
Formation. | Barnes, 1979a | | | | | B-10 | Ts | 29 ⁰ 38'
103 ⁰ 27' | Tertiary | Sill, syenite, intruded
Cretaceous Boquillas
Formation. | Barnes, 1979a | | | | | B-11 | Tu | 29 ⁰ 38'
103°31' | Tertiary | Stock, intruded Cretaceous
Boquillas Formation. | Barnes, 1979a | | | | | B-12 | Tb | 29 ⁰ 35'
103 ⁰ 28' | Tertiary | Sill-laccolith?, basalt?,
intruded Cretaceous
Boquillas Formation. | Barnes, 1979a | | | | | B-13 | Tt | 29 ⁰ 35'
103 ⁰ 30' | Tertiary | Laccolith, trachyte,
intruded Cretaceous
Boquillas Formation. | Moon, 1953 | |------|-------------------|---|---|---|-------------------------------| | B-14 | Tpr | 29 [°] 31'
103°47' | Tertiary | Stock?, peralkaline rhyo-
lite, intruded Cretaceous
Boquillas Formation. | Erickson, 1953 | | B-15 | Tu | 29 [°] 30'
103 [°] 45' | Tertiary | Lithology unknown,
intruded Cretaceous Santa
Elena Limestone. | Barnes, 1979a | | B-16 | Tgb | 29 [°] 29'
103°41' | Oligocene 33.5±0.7, 34.3±2.2 m.y. (F.W. McDowell, unpublished data) | Sill, gabbro, intruded
Cretaceous Boquillas
Formation. | Lonsdale, 1940 | | B-17 | Tpr,
Tb,
Tr | 29 [°] 31'
103°39' | Tertiary | Stock, peralkaline rhyo-
lite in north one-half
of area; sills, basalt
rhyolite in south one-half;
intruded Cretaceous
Aguja and Pen Formations. | Lonsdale, 1940;
Moon, 1953 | | B-18 | Tb | 29 ⁰ 30'
103 ⁰ 38' | Tertiary | Sill?, basalt, intruded
Cretaceous Boquillas
Formation. | Lonsdale, 1940 | | B-19 | Tr | 29 ⁰ 31'
103 ⁰ 36' | Tertiary | Stock-laccolith?, rhyo-
lite intruded Cretaceous
Santa Elena Limestone
and Boquillas Formations. | Moon, 1953 | | B-20 | Tb | 29 [°] 32'
103°35' | Tertiary | Dome, basalt, intruded
Cretaceous Aguja
Formation. | Moon, 1953 | | B-21 | Tr | 29 ⁰ 31'
103 ⁰ 34' | Tertiary | Dome, rhyolite, intruded
Cretaceous Santa Elena
Limestone. | Moon, 1953 | | B-22 | Ts | 29 [°] 30'
103 [°] 33' | Tertiary | Sill?, syenite, intruded
Cretaceous Boquillas
Formation. | Moon, 1953 | | B-23 | Tpr | 29 [°] 30'
103 [°] 33' | Tertiary | Stocks?, laccoliths?,
peralkaline rhyolite,
intruded Cretaceous
Boquillas and Pen
Formations. | Lonsdale, 1940 | | B-24 | Tr | 29 ⁰ 28'
103 ⁰ 33' | Tertiary | Stock?, rhyolite,
intruced Cretaceous
Santa Elena Limestone. | Lonsdale, 1940 | | B-25 | Ts | 29°27'
103°33' | Tertiary | Sill, syenite, intruded
Cretaceous Aguja
Formation. | Lonsdale, 1 94 0 | | B-26 | Tb | 29 ⁰ 25'
103 ⁰ 44' | Tertiary | Sill, basalt, intruded
Cretaceous Santa Elena
Limestone. | Lonsdale, 1940 | | B-27 | Tb | 29 ⁰ 25'
103 ⁰ 38' | Tertiary | Sill and laccolith,
basalt, intruded Cretace-
ous Boquillas Formation. | Lonsdale, 1940 | | B-28 | Tt | 29 ⁰ 26'
103 ⁰ 34' | Tertiary | Sill, trachyte, intruded
Cretaceous Aguja
Formation. | Lonsdale, 1940 | | B-29 | Tpt | 2 9° 27'
103°31' | Tertiary | Sill, peralkaline
intruded Cretaceous Aguja
Formation. | Lonsdale, 1940 | | B-30 | Ts | 29 ⁰ 26'
103 ⁰ 32' | Tertiary | Sill, syenite, intruded
Cretaceous Aguja
Formation. | Lonsdale, 1940 | |------|-------------|---|--|---|--------------------------------| | B-31 | Ts
Tgb | 29 ⁰ 25'
103 ⁰ 35' | Tertiary | Sill?, syenite and gabbro,
intruded Cretaceous Pen
and Aguja Formations. | Lonsdale, 1940 | | B-32 | Ts | 29 ⁰ 23'
103 ⁰ 38' | Oligocene or
Eocene
37.5±2.4 m.y.
(Daily, 1979)
41.0±0.8 m.y.
(F.W. McDowell,
unpublished
data) | Domes?, sill and dike,
syenite, intruded Cre-
taceous Boquillas and
Aguja Formations. | Daily, 1979;
Lonsdale, 1940 | | B-33 | Tpt,
Tgb | 29 ⁰ 24'
103 ⁰ 33' | Tertiary | Stock?, peralkaline
trachyte; sill?, gabbro,
intruded Cretaceous Aguja
Formation. | Lonsdale, 1940 | | B-34 | Tpt | 29 ⁰ 25'
103 ⁰ 31' | Tertiary | Sill?, peralkaline
trachyte, intruded Cre-
taceous Aguja Formation. | Lonsdale, 1940 | | B-35 | Ts | 29 ⁰ 24'
103 ⁰ 32' | Tertiary | Sill, syenite, intruded
Cretaceous Aguja
Formation. | Lonsdale, 1940 | | B-36 | Tgb | 29 ⁰ 21'
103 ⁰ 35' | Tertiary | Laccoliths, gabbro,
intruded Cretaceous Pen
and Aguja Formations. | Lonsdale, 1940 | | B-37 | Tpt | 29 ⁰ 21'
103 ⁰ 32' | Oligocene
or Eocene
39.1±2.2 m.y.
(Daily, 1979) | Laccolith; peralkaline
trachyte, intruded Cre-
taceous Pen and Aguja
Formations. | Daily, 1979;
Lonsdale, 1940 | | B-38 | Tu | 29 ⁰ 22'
103 ⁰ 45' | Tertiary | Lithology unknown,
intruded Cretaceous Santa
Elena Limestone. | Lonsdale, 1940 | | B-39 | Tr | 29 ⁰ 21'
103 ⁰ 44' | Tertiary | Sill?, rhyolite, intruded
Cretaceous Santa Elena
Limestone. | Lonsdale, 1940 | | B-40 | Ts | 29 ⁰ 19'
103 ⁰ 46' | Tertiary | Sill?, syenite, intruded
Cretaceous Santa Elena
Limestone. | Yates and
Thompson, 1959 | | B-41 | Ts | 29 ⁰ 19'
103 ⁰ 41' | Tertiary | Sill?, syenite, intruded
Cretaceous Buda Limestone
and Del Rio Clay. | Yates and
Thompson, 1959 | | B-42 | Ts | 29 ⁰ 34'
103 ⁰ 24' |
Tertiary | Sill-laccolith?, syenite?, intruded Cretaceous Aguja Formation. | Barnes, 1979a | | B-43 | Tb | 29 ⁰ 35'
103 ⁰ 18' | Tertiary | Sill?, basalt, intruded
Cretaceous Boquillas
Formation. | Barnes, 1979a | | B-44 | Tm | 29 ⁰ 30'
103 ⁰ 15' | Tertiary | Laccoliths, monzonite,
intruded Cretaceous
Aguja Formation. | Barnes, 1979a | | B-45 | Tpr | 29 ⁰ 31'
103 ⁰ 29' | Tertiary | Stock?, peralkaline rhyo-
lite, intruded Cretaceous
Santa Elena Limestone and
Boquillas and Aguja
Formations. | Barnes, 1979a | | B-46 | Tu | 29 ⁰ 32'
103 ⁰ 27' | Tertiary | Sill?, lithology unknown,
intruded Cretaceous
Brewster Formation. | Barnes, 1979a | | B-47 | Tt,
Tpr | 29 [°] 30'
103 [°] 25' | Tertiary | Sill?, trachyte, and
stock-laccolith?, and
sill?, peralkaline rhyo-
lite, intruded Cretaceous
Boquillas Formation and
Santa Elena Limestone. | Barnes, 1979a | |------|--------------------|---|--|---|---| | B-48 | Tpr,
Tpt,
Tt | 29 ⁰ 29'
103 ⁰ 29' | Eocene
41.3±2.5 m.y.
(Daily, 1979) | Laccolith, peralkaline rhyolite and trachyte; stock, peralkaline trachyte; intruded Cretaceous Boquillas and Aguja Formations. | Barnes, 1979a;
Daily, 1979 | | B-49 | Tpr,
Tr | 29 [°] 27'
103 [°] 29' | Tertiary | Stock and sill, per-
alkaline rhyolite;
laccolith and stock-
laccolith?, rhyolite;
intruded Cretaceous Buda
Limestone, Del Rio Clay,
and Boquillas and Aguja
Formations. | Barnes, 1979a | | B-50 | Tb,
Tpr | 29 [°] 25'
103 [°] 25' | Tertiary | Sill?, basalt; laccolith
and sill-laccolith, per-
alkaline rhyolite;
intruded Cretaceous
Boquillas Formation. | Barnes, 1979a | | B-51 | Tr | 29 [°] 27
103°23' | Tertiary | Laccolith, rhyolite,
intruded Cretaceous
Boquillas Formation. | Barnes, 1979a | | B-52 | Tt | 29 [°] 29'
103 [°] 24' | Tertiary | Laccolith, trachyte,
intruded Cretaceous
Boquillas Formation. | Barnes, 1979a | | B-53 | Tm,
Tb | 29 [°] 29'
103 [°] 21' | Tertiary | Laccolith, monzonite?;
and stock?, basalt;
intruded Cretaceous
Aguja Formation. | Barnes, 1979a | | B-54 | Tgb | 29 [°] 26'
103 [°] 27' | Eocene 42.4±0.7 m.y. (F. W. McDowell, unpublished data) | Dome, gabbro, intruded
Santa Elena Limestone. | Barnes, 1979a | | B-55 | Tr,
Tpr,
Tt | 29 [°] 24'
103 [°] 30' | Oligocene
and Eocene
26.7±1.9 m.y.
(rhyolite),
39.6±2.1 m.y.
(peralkaline
rhyolite)
(Daily, 1979) | Laccolith, rhyolite and peralkaline rhyolite; laccolith?, trachyte; intruded Cretaceous Aguja and Pen Formations. | Barnes, 1979a;
Daily, 1979 | | B-56 | Tpt,
Tpr | 29°20'
103°30' | Oligocene and Eocene 35.2±2.7 m.y. (south body) 37.5±2.6 m.y. 41.0±2.9 m.y. (north body, peralkaline rhyolite) | Laccoliths, peralkaline
trachyte and peralkaline
rhyolite, intruded Cre-
taceous Aguja and Pen
Formations. | Barnes, 1979a;
Daily, 1979 | | B-57 | Tr,
Tpt | 29 [°] 24 '
103 [°] 27 ' | Tertiary | Sill?, rhyolite and
peralkaline trachyte,
intruded Cretaceous
Aguja Formation. | Barnes, 1979a | | B-58 | Ts | 29 [°] 24'
103 [°] 25' | Tertiary | Sill, questionable in
north one-half, syenite,
intruded Cretaceous
Boquillas and Pen
Formations. | Barnes, 1979a;
Maxwell and
others, 1967 | | B-59 | Tgb,
Tb,
Tt,
Ts | 29°25'
103°23' | Tertiary | Sills, gabbro, basalt, and trachyte; laccolith, syenite; intruded Cretaceous Aguja and Javelina Formations. | Barnes, 1979a;
Maxwell and
others, 1967 | |------|--------------------------|---|-----------------------------------|--|---| | B-60 | Tpt | 29 ⁰ 59'
103 ⁰ 02' | Tertiary | Dikes, peralkaline
trachyte, intruded
Pennsylvanian and
Mississippian Tesnus
Formation. | King, 1937 | | B-61 | Tpt | 29 [°] 51'
103 [°] 13' | Tertiary | Stocks, peralkaline
trachyte, intruded Cre-
taceous Glen Rose and
Del Carmen Formations. | King, 1937 | | B-62 | Tpt | 29 [°] 53'
103 [°] 02' | Tertiary | Stock, peralkaline
trachyte, intruded Cre-
taceous Del Carmen
Formation. | King, 1937 | | B-63 | Tpt | 29 ⁰ 49'
103 ⁰ 02' | Tertiary | Stock, peralkaline
trachyte, surrounded by
alluvium. | King, 1937 | | B-64 | Tfs | 29 ⁰ 49'
102 ⁰ 59' | Tertiary | Stock?, feldspathoidal
syenite, intruded Cre-
taceous Santa Elena
Limestone. | Barnes, 1979a;
King, 1937 | | B-65 | Tfs | 29 ⁰ 45'
102 ⁰ 51' | Tertiary | Sill?, feldspathoidal
syenite, intruded Cre-
taceous Santa Elena
Limestone. | St. John, 1965 | | B-66 | Tb | 29 ⁰ 43'
103 ⁰ 00' | Tertiary | Sill?, stock at east
end, basalt, intruded
Cretaceous Boquillas
Formation and Santa
Elena Limestone. | St. John, 1965 | | B-67 | Tb | 29 [°] 39'
103 [°] 01' | Tertiary | Sill, basalt, intruded
Cretaceous Boquillas
Formation. | St. John, 1965 | | | | | BREWSTER COUNTY (
Big Bend Nat | | | | B-68 | Tgb | 29 ⁰ 38'
103 ⁰ 11' | Tertiary | Sill, gabbro, intruded
Cretaceous Aquija
Formation. | Maxwell and others, 1967 | | B-69 | Tgb | 29 [°] 30'
103 [°] 05' | Tertiary | Sill, gabbro, intruded
Cretaceous Boquillas
Formation. | Maxwell and others, 1967 | | B-70 | Тg | 29 ⁰ 22'
103 ⁰ 04' | Tertiary | Laccolith, granite,
intruded Cretaceous
Boquillas and Pen
Formations. | Maxwell and others, 1967 | | B-71 | Tgb | 29 ⁰ 26'
103 ⁰ 13' | Tertiary | Sill, gabbro, intruded
Cretaceous Aguja
Formation. | Maxwell and others, 1967 | | B-72 | Ts | 29 ⁰ 24'
103 ⁰ 14' | Tertiary | Sill, syenite, intruded
Eocene Canoe Formation. | Maxwell and others, 1967 | | B-73 | Тg | 29 [°] 24'
103 [°] 12' | Tertiary | Laccolith, granite,
intruded Cretaceous Aguja
Formation and Eocene
Hannold Hill Formation. | Maxwell and others, 1967 | | B-74 | Tpt | 29°23'
103°11' | Tertiary | Sill, peralkaline
trachyte, intruded Eocene
Hannold Hill Formation. | Maxwell and others, 1967 | | B-75 | Tpt | 29 [°] 23'
103°26' | Tertiary | Stock?, peralkaline
trachyte, intruded | Maxwell and others, 1967 | |------|--------------------|---|--|---|---| | | | | | Cretaceous Javelina Formation and tuff- aceous sedimentary rocks of Tertiary Chisos Formation. | June 10, 170/ | | B-76 | Ts,
Tgb | 29 [°] 23'
103 [°] 23' | Tertiary | Laccolith, syenite, and
sill, gabbro, intruded
Cretaceous Aguja
Formation. | Maxwell and others, 1967 | | B-77 | Tg | 29 ⁰ 23'
103 ⁰ 19' | Tertiary | Laccolith and sill?, and
sill at Painted Gap
Hills; granite, intruded
Cretaceous Aguja Formation. | Maxwell and others, 1967 | | B-78 | Tt | 29 [°] 21'
103 [°] 24' | Tertiary | Sill and three small
stocks in southwest part,
trachyte, intruded
Cretaceous Aguja and
Javelina Formations and,
Tertiary Chisos Formation. | Maxwell and others, 1967 | | B-79 | Tr | 29 [°] 21'
103 [°] 21' | Tertiary | Laccolith, rhyolite,
intruded Cretaceous Aguja
Formation. | Maxwell and others, 1967 | | B-80 | Tb,
Tt,
Ts | 29 ⁰ 20'
103 ⁰ 22' | Tertiary | Sills, basalt, trachyte,
and syenite; intruded
Cretaceous Aguja
Formation. | Maxwell and others, 1967 | | B-81 | Ts | 29°20'
103°16' | Oligocene
26.1±1.9 m.y.
(Daily, 1979) | Laccolith, syenite,
intruded Tertiary Chisos
Formation. | Daily, 1979;
Maxwell and
others, 1967 | | B-82 | Tr,
Tpr | 29 ⁰ 19'
103 ⁰ 12' | Oligocene 28.9±2.4 m.y. (rhyolite) (Daily, 1979) | Sills, rhyolite and peralkaline rhyolite, intruded Cretaceous Aguja Formation and Tertiary Chisos Formation. | Daily, 1979;
Maxwell and
others, 1967;
Ogley, 1979 | | B-83 | Tfs | 29 ⁰ 19'
103 ⁰ 28' | Tertiary | Sill, feldspathoidal
syenite, intruded
Cretaceous Javelina
Formation. | Maxwell and others, 1967 | | B-84 | Ts,
Tt | 29 ⁰ 16'
103 ⁰ 25' | Tertiary | Dike, syenite, and stocks,
trachyte, intruded Cre-
taceous Aguja Formation
and Tertiary Chisos
Formation. | Maxwell and others, 1967 | | B-85 | Tpr | 29 [°] 16'
103 [°] 19' | Oligocene
31.3±2.3,
36.8±2.5 m.y.
(Daily, 1979) | Stock, peralkaline rhyo-
lite, intruded Tertiary
Chisos Formation. | Daily, 1979;
Maxwell and
others, 1967;
Ogley, 1979 | | B-86 | Τt | 29 ⁰ 19'
103 ⁰ 14' | Tertiary | Laccolith, trachyte,
intruded Tertiary
Chisos Formation. | Maxwell and others, 1967; Ogley, 1979 | | B-87 | Tpr,
Tt,
Tpt | 29 ⁰ 17'
103 ⁰ 13' | Tertiary | Stocks, peralkaline rhyo-
lite, trachyte, and per-
alkaline trachyte,
intruded Tertiary Chisos
and South Rim Formations. | Maxwell and
others, 1967;
Ogley, 1979 | | B-88 | Tpr,
Tr | 29 [°] 18'
103 [°] 11' | Miocene
17.0±1.2 m.y.
(rhyolite)
(Daily, 1979) | Dikes, peralkaline rhyo-
lite, and sill, rhyolite,
mostly surrounded by
alluvium; intruded
Tertiary Canoe and Chisos
Formations. | Daily, 1979;
Maxwell and
others, 1967 | | B-89 | Tr | 29 ⁰ 16'
103 ⁰ 10' | Tertiary | Stock and sill (east
body), rhyolite, intruded
Tertiary Chisos and Canoe
Formations. | Maxwell and others, 1967 | |-------
---------------------|---|---|--|---| | B-90 | Tpr,
Tt | 29 [°] 15'
103 [°] 15' | Tertiary | Dike, peralkaline rhyo-
lite, and stock, trachyte,
intruded Tertiary Chisos
Formation. | Maxwell and
others, 1967;
Ogley, 1979 | | B-91 | Tm | 29 [°] 15
103 [°] 33' | Tertiary | Sill or laccolith, monz-
onite, intruded Cretaceous
Aguja Formation. | Maxwell and others, 1967 | | B-92 | Tpr | 29°14'
103°25' | Oligocene
27.2±1.9 m.y.
(Daily, 1979) | Stock, peralkaline rhyo-
lite, intruded Tertiary
Chisos Formation. | Daily, 1979;
Maxwell and
others, 1967 | | B-93 | Tpr,
Tr, | 29 [°] 11'
103 [°] 19' | Tertiary | Stock?, peralkaline rhyo-
lite and rhyolite,
intruded Tertiary
Chisos Formation. | Maxwell and others, 1967 | | B-94 | Tpr,
Tr | 29 [°] 13'
103 [°] 16' | Tertiary | Sill, peralkaline rhyo-
lite and rhyolite,
intruded Tertiary Chisos
Formation. | Maxwell and others, 1967 | | B-95 | Tpr | 29 [°] 13'
103 [°] 14' | Tertiary | Dike-sill and sill, per-
alkaline rhyolite,
intruded Tertiary Chisos
Formation. | Maxwell and others, 1967 | | B-96 | Tpr,
Tgb | 29°11'
103°16' | Tertiary | Stock, peralkaline rhyo-
lite and sills, gabbro,
intruded Cretaceous Aguja
Formation and Tertiary
Chisos Formations. | Maxwell and others, 1967 | | в-97 | Tgb,
Tpr,
Tpt | 29°10'
103°12' | Tertiary | Laccolith, gabbro; sill, peralkaline rhyolite; stock, peralkaline trachyte; intruded Tertiary Chisos Formation. | Maxwell and others, 1967 | | в-98 | Ts,
Tr | 29 ⁰ 09'
103 ⁰ 17' | Tertiary | Stock?, syenite and stock, rhyolite, intruded Cretaceous Aguja Formation and Tertiary Chisos Formation. | Maxwell and others, 1967 | | B-99 | Tgb,
Tt | 29 [°] 07'
103 [°] 15' | Tertiary | Sill, gabbro; dike,
trachyte; intruded
Cretaceous Aguja
Formation. | Maxwell and others, 1967 | | B-100 | Ts | 29 [°] 11'
103 [°] 09' | Tertiary | Sill, syenite, intruded
Cretaceous Aguja and
Javelina Formations.
Western outcrops sur-
rounded by alluvium. | Maxwell and others, 1967 | | B-101 | Tr | 29 [°] 11'
103 [°] 10' | Tertiary | Laccolith, rhyolite,
intruded Cretaceous
Aguja Formation. | Maxwell and others, 1967 | | B-102 | Tgb,
Tr | 29 [°] 07
103 [°] 11' | Tertiary | Sill, gabbro, and sill?,
rhyolite, intruded
Cretaceous Aguja
Formation. | Maxwell and others, 1967 | | B-103 | Tr | 29 ⁰ 13'
103 ⁰ 06' | Tertiary | Stock?, rhyolite,
intruded Cretaceous
Aguja Formation. | Maxwell and others, 1967 | | B-104 | Tgb | 29 ⁰ 11'
103 ⁰ 07' | Tertiary | Sill, gabbro, intruded
Cretaceous Javelina
Formation. | Maxwell and others, 1967 | | B-105 | Tgb,
Tr | 29 ⁰ 05'
103 ⁰ 10' | Oligocene or Eocene 34.4±3.0 m.y. (gabbro) (F.W. McDowell, unpublished data) | Sill, gabbro and rhyo-
lite, intruded Cretaceous
Boquillas, Pen, and
Aguja Formations. | Maxwell and others, 1967 | |-------|--------------------|---|--|--|--| | B-106 | Ts,
Tgb,
Tr | 29 [°] 05'
103 [°] 07' | Tertiary | Sills, syenite, gabbro,
and rhyolite, intruded
Cretaceous Boquillas,
Pen, and Aguja Formations. | Maxwell and others, 1967 | | B-107 | Tb ,
Tgb | 29 ⁰ 14'
103 ⁰ 44' | Oligocene 32.6±0.6 m.y. (basalt) (F.W. McDowell, unpublished data) | Sill, basalt and gabbro,
intruded Cretaceous
Boquillas Formation. | Maxwell and others, 1967 | | B-108 | Tb,
Ts,
Tgb | 29 ⁰ 11'
103 ⁰ 35' | Tertiary | Sills and dikes, basalt
and syenite; sills,
gabbro; syenite, intruded
Cretaceous Aguja and Pen
Formations. | Maxwell and others, 1967 | | | A | | PRESIDIO CO | OUNTY (P) | | | P-1 | Tqm | 29 ⁰ 58'
104 ⁶ 22' | Oligocene 36.7±0.6, 36.5±0.6 m.y. (C.D. Henry, unpublished data) | Stock (resurgent dome), quartz monzonite, propylitic alteration, intruded Pennsylvanian and Permian sandstone, shale, and limestone, and Tertiary lava flows. | Duex and
Henry, 1981 | | P-2 | Tpr,
Tt | 29 ⁰ 59'
104 ⁰ 30' | Tertiary | Stocks, peralkaline rhyolite and trachyte (southwest outcrop); dike (southeast outcrop), trachyte, intruded mostly lava flows of Tertiary Chinati Mountains Group. | Amsbury, 1958;
Cepeda and
Henry, 1983 | | P-3 | Tqm | 29 ⁰ 55'
104 ⁰ 30' | Oligocene
32.0±0.7 m.y.
(Cepeda and
Henry, 1983) | Stock (resurgent dome),
quartz monzonite,
intruded mostly lava
flows of Tertiary
Chinati Mountains Group. | Amsbury, 1958;
Cepeda and
Henry, 1983 | | P-4 | Tpr | 29 ⁰ 58'
105 ⁰ 25' | Oligocene
32.3±0.7 m.y. | Stocks-dikes, peralkaline rhyolite, intruded mostly lava flows of Tertiary Chinati Mountains Group. | Cepeda and
Henry, 1983 | | P-5 | Tr | 29 [°] 54'
104 [°] 22' | Tertiary | Domes-flows and dome
(smaller outcrop),
rhyolite, intruded mostly
lava flows of Tertiary
Chinati Mountains Group. | Cepeda and
Henry, 1983 | | P-6 | Tqm | 29 [°] 48'
104 [°] 24' | Tertiary | Stock and stock-sills, quartz monzonite, intruded Permian sand-stone and limestone. | Cepeda and
Henry, 1983;
Price and
Henry, 1982 | | P-7 | Тt | 29 [°] 48'
104 [°] 22' | Tertiary | Sills, trachyte, intruded
Permian sandstone and
limestone, and Cretaceous
Shafter and Del Carmen
Formations. | Cepeda and
Henry, 1983;
Rix, 1953 | | P-8 | Tr | 29°45'
104°16' | Tertiary | Laccolith, rhyolite, intruded sandstone and shale of Permian Ross Mine Formation, sandstone of Cretaceous Presidio Formation, and Tertiary volcanic rocks. | Rix, 1953 | |------|-----------|---|---|--|-----------------------------------| | P-9 | Tpr | 29 ⁰ 46 '
104 ⁰ 09 ' | Oligocene 34.3±0.7 m.y. (C.D. Henry, unpublished data) | Stock-laccolith?, peralkaline rhyolite, surrounded by alluvium. | Hardisty, 1982 | | P-10 | Tt | 29 ⁰ 43'
104 ⁰ 12' | Tertiary | Stock?, trachyte, intruded
Tertiary volcanic rocks. | Dietrich, 1965 | | P-11 | Tb | 29 37'
104 09' | Miocene
18.0±0.4 m.y.
(McDowell,
1979) | Stock, basalt, intruded
lava flows of Tertiary
Rawls Formation. | Dietrich, 1965;
McDowell, 1979 | | P-12 | Tt | 30°02'
104°03' | Tertiary | Dome or laccolith,
trachyte, intruded
Tertiary volcanic rocks. | Dietrich, 1965 | | P-13 | Tt | 30°28'
104°06' | Tertiary | Sill-dike, trachyte,
intruded Tertiary
volcanic rocks. | McKnight, 1969 | | P-14 | Tb | 29 ⁰ 25'
104 ⁰ 06' | Tertiary | Sill?, basalt, intruded
Tertiary volcanic rocks. | McKnight, 1969 | | P-15 | Ts | 29 [°] 27'
104 [°] 00' | Oligocene 26.8±0.4 m.y. (F.W. McDowell, unpublished data) | Stock, syenite, intruded Tertiary volcanic rocks. | McKnight, 1969 | | P-16 | Tb | 29 ⁰ 50'
103 ⁰ 56' | Tertiary | Sill?, basalt, intruded
Tertiary volcanic rocks. | Barnes, 1979a | | P-17 | Tb | 29 ⁰ 48'
103 ⁰ 57' | Tertiary | Stock, basalt, intruded Tertiary volcanic rocks and tuffaceous sediments of Oligocene Tascotal Formation. | Barnes, 1979a | | P-18 | Tb | 29 [°] 45′
103 [°] 57′ | Tertiary | Cone sheet, basalt, intruded Tertiary volcanic rocks and tuffaceous sediments of Oligocene Tascotal Formation. | Erickson, 1953 | | P-19 | Tb | 29° 4 3'
103°59' | Tertiary | Stock, basalt, intruded Tertiary volcanic rocks and tuffaceous sediments of Oligocene Tascotal Formation. | Erickson, 1953 | | P-20 | Tb,
Ts | 29 [°] 45'
103 [°] 50' | Tertiary | Dikes, basalt and syenite, intruded Tertiary volcanic rocks and tuffaceous sediments of Tertiary Pruett Formation. | Erickson, 1953 | | P-21 | Ts | 29 [°] 37'
103 [°] 48' | Tertiary | Dome, syenite, intruded
volcanic rocks of
Oligocene Mitchell Mesa
Welded Tuff. | Erickson, 1953 | | P-22 | Ts | 29 ⁰ 31'
103 ⁰ 59' | Tertiary | Dike and domes, syenite,
intruded lava flows of
Tertiary Rawls Formation. | Erickson, 1953 | | P-23 | Tpr | 29 [°] 30'
103 [°] 48' | Oligocene 35.2±0.8 m.y. (southeast outcrop) (F.W. McDowell, unpublished data) | Stock, peralkaline rhyolite, intruded Tertiary volcanic rocks and lava flows of Tertiary Rawls Formation. | Erickson, 1953 | |------|-------------------|---|---|---|----------------| | P-24 | Tr | 29°27'
103°48' | Oligocene 37.5±0.8 m.y. (sill) (F.W. McDowell unpublished data) | Sill and central stock (laccolithic dome), rhyolite, intruded Cretaceous Glen Rose Formation and lower Paleozoic sandstone, shale, and limestone. | Lonsdale, 1940 | | P-25 | Tt,
Tb,
Tpr | 29 [°] 28'
103 [°] 53' | Tertiary | Dome, trachyte and basalt; stock, per-alkaline rhyolite into Tertiary volcanic rocks and lava flows of Tertiary Rawls Formation. | McKnight, 1969 | | P-26 | Tt,
Tpr | 29 [°] 29'
103 [°] 57' | Tertiary | Dome, trachyte;
laccolith?, peralkaline
rhyolite, intruded
Tertiary volcanic rocks. | McKnight, 1969 | | P-27 | Tgb,
Tb | 29 [°] 24'
104°00' | Tertiary | Dome, gabbro and basalt, intruded Tertiary volcanic rocks. | McKnight, 1969 | |
P-28 | Tb | 29 [°] 25'
103 [°] 56' | Tertiary | Dome, basalt, intruded
Tertiary volcanic rocks. | McKnight, 1969 | | P-29 | Ts | 29°19'
103°52' | Tertiary | Laccoliths, syenite,
intruded Tertiary volcanic
rocks and Cretaceous
Boquillas Formation. | McKnight, 1969 | | P-30 | Tr | 29°19'
103°48' | Tertiary | Sill, rhyolite, intruded
Cretaceous Boquillas
Formation. | McKnight, 1969 | ### REFERENCES CITED - Albritton, C. C., Jr., and Smith, J. F., Jr., 1965, Geology of the Sierra Blanca area, Hudspeth County, Texas: U.S. Geological Survey Professional Paper 479, 131 p. - Amsbury, D. L., 1958, Geologic map of Pinto Canyon area, Presidio County, Texas: Austin, University of Texas, Bureau of Economic Geology Geologic Quadrangle Map 22, scale 1:63,360. - Anderson, J. E., Jr., 1968, Igneous geology of the central Davis Mountains, Jeff Davis County, Texas: Austin, University of Texas, Bureau of Economic Geology Geologic Quadrangle Map 36, scale 1:62,500. - Barker, D. S., 1977, Northern Trans-Pecos magmatic province--Introduction and comparison with the Kenya Rift: Geological Society of America Bulletin, v. 88, no. 10, p. 1421-1427. - 1979, Magmatic evolution in the Trans-Pecos province, in Walton, A. W., and Henry. C. D., eds., Cenozoic geology of the Trans-Pecos volcanic field of Texas: Austin, University of Texas, Bureau of Economic Geology, Guidebook 19, p. 4-9. - Barker, D. S., Long, L. E., Hoops, G. K., and Hodges, F. N., 1977, Petrology and Rb-Sr isotope geochemistry of intrusions in the Diablo Plateau, northern Trans-Pecos magmatic province, Texas and New Mexico: Geological Society of America Bulletin, v. 88, no. 10, p. 1437-1446. - Barnes, V. E., 1968, Geologic atlas of Texas, Van Horn-El Paso sheet: Austin, University of Texas, Bureau of Economic Geology map, scale 1:250,000. - 1979a, Geologic atlas of Texas, Emory Peak-Presidio sheet: Austin, University of Texas, Bureau of Economic Geology map, scale 1:250,000. - _____ 1979b, Geologic atlas of Texas, Marfa sheet: Austin, University of Texas, Bureau of Economic Geology map, scale 1:250,000. - _____1982, Geologic atlas of Texas--Fort Stockton sheet: Austin, University of Texas, Bureau of Economic Geology map, scale 1:250,000. - Bedinger, M. S., Sargent, K. A., and Reed, J. E., 1984, Geologic and hydrologic characterization and evaluation of the Basin and Range province relative to the disposal of high-level radioactive waste--Part I, Introduction and guidelines: U.S. Geological Survey Circular 904-A, 16 p. - Cepeda, J. C., and Henry, C. D., 1983, Oligocene volcanism and multiple caldera formation in the Chinati Mountains, Presidio County, Texas: Austin, University of Texas, Bureau of Economic Geology Report of Investigations 135, 32 p. - Daily, M., 1979, Age relations in alkaline rocks from the Big Bend region, Texas, in Walton, A. W., and Henry, C. D., eds., Cenozoic geology of the Trans-Pecos volcanic field of Texas: Austin, University of Texas, Bureau of Economic Geology Guidebook 19, p. 92-96. - Dasch, E. J., Armstrong, R. L., and Clabaugh, S. E., 1969, Age of Rim Rock dike swarm, Trans-Pecos Texas: Geological Society of America Bulletin, v. 80, no. 9, p. 1819-1824. - Denison, R. E., and Hetherington, E. A., 1969, Basement rocks in far west Texas and south-central New Mexico, in Kottlowski, F. E., and LeMone, D. V., eds., Border stratigraphy symposium: New Mexico Bureau of Mines and Mineral Resources Circular 104, p. 1-16. - Dietrich, J. W., 1965, Geologic map of Presidio area, Presidio Texas: Austin, University of Texas, Bureau of Economic Geology Geologic Quadrangle Map 28, scale 1:48,000. - Duex, T. W., and Henry. C. D., 1981, Calderas and mineralization, volcanic geology and mineralization in the Chinati caldera complex, Trans-Pecos Texas: Austin, University of Texas, Bureau of Economic Geology Geological Circular 81-2, 14 p. - G. K., Jr., 1943, Geology of the Santiago Peak Eifler, Quadrangle, Texas: Geological Society of America Bulletin, v. 54, no. 10, p. 1613-1643. - 1951, Geology of the Barrilla Mountains, Texas: Geological Society of America Bulletin, v. 62, no. 4, p. 339-353. - Erickson, R. L., 1953, Stratigraphy and petrology of the Tascotal Mesa Quadrangle, Texas: Geological Society of America Bulletin, v. 64, no. 12, p. 1353-1386. - Goldich, S. S., and Elms, M. A., 1949, Stratigraphy and petrology of the Buck Hill Quadrangle, Texas: Geological Society of America Bulletin, v. 60, no. 7, p. 1133-1182. i, D. E., 1970, Geology and trace transition element - variation of the Mitre Peak area, Trans-Pecos Texas: - Austin, University of Texas, unpublished M.S. thesis, 201 p. Hardisty, R. D., 1982, Geology of the igneous rocks of the Cienega southwest Quadrangle, Presidio County, West Texas State University, unpublished M.A. Canyon, thesis, 121 p. - Hugh, 1957, Geologic map of the Wylie Mountains and Hay-Roe, vicinity, Culberson and Jeff Davis Counties, Austin, University of Texas, Bureau of Economic Geology Geologic Quadrangle Map 21, scale 1:48,000. - Henry. C. D., and McDowell, F. W., 1982, Timing, distribution, and estimates of volumes of silicic volcanism in Trans-Pecos Texas (abs.): Geological Society of America Abstracts with Programs, v. 14, no. 3, p. 113. - J. M., 1970, Petrology and mineralogy of the Campus Hoffer, Andesite pluton, El Paso, Texas: Geological Society America Bulletin v. 81. no. 7, p. 2129-2135. - King, P. B., 1937, Geology of the Marathon region, Texas: U.S. Geological Survey Professional Paper 187, 148 p. - 1965, Geology of the Sierra Diablo region, Texas: U.S. - Geological Survey Professional Paper 480, 179 p. Lonsdale, J. T., 1940, Igneous rocks of the Terlingua-Solitario region, Texas: Geological Society of America Bulletin, v. 51. no. 10, p. 1539-1636. - Maxwell, R. A., Lonsdale, J. T., Hazzard, R. T., and Wilson, J. A., 1967, Geology of Big Bend National Park, Brewster County, Texas: Austin, University of Texas Publication 6711, 320 p. - McAnulty, W. N., 1955, Geology of Cathedral Mountain Quadrangle, Brewster County, Texas: Geological Society of America Bulletin, v. 66, no. 5, 531-578. - McDowell, F. W., 1979, Potassium-argon dating in the Trans-Pecos Texas volcanic field, in Walton, A. W., and Henry, C. D., eds., Cenozoic geology of the Trans-Pecos volcanic field of Texas: Austin, University of Texas, Bureau of Economic Geology Guidebook 19, p. 10-18. - McKnight, J. R., 1969 [1970], Geologic map of Bofecillos Mountains area, Trans-Pecos Texas: Austin. University of Texas, Bureau of Economic Geology Geologic Quadrangle Map 37, scale 1:48,000. - Moon, C. G., 1953, Geology of Agua Fria Quadrangle, Brewster County, Texas: Austin, University of Texas, Bureau of Economic Geology Report of Investigations 15, 45 p. - Ogley, D. S., 1979, Eruptive history of the Pine Canyon caldera, Big Bend Park, in Walton, A. W., and Henry, C. D., eds., Cenozoic geology of the Trans-Pecos volcanic field of Texas: Austin, University of Texas, Bureau of Economic Geology Guidebook 19, p. 67-71. - Parker, D. F., 1976, Petrology and eruptive history of an Oligocene trachytic shield volcano, near Alpine, Texas: Austin, University of Texas, unpublished Ph.D. dissertation, 183 p. - 1983, Origin of the trachyte-quartz trachyte-peralkalic rhyolite suite of the Oligocene Paisano volcano, Trans-Pecos Texas: Geological Society of America Bulletin, v. 94, no. 5, p. 614-629. - Price, J. G., and Henry, C. D., 1982, Porphyry copper-molybdenum deposit associated with the Chinati Mountains caldera, Trans-Pecos Texas (abs.): Geological Society of America Abstracts with Programs, v. 41, no. 7, p. 593. - Ramsey, J. W., 1961, Perdiz Conglomerate, Presidio County, Texas: Austin, University of Texas, unpublished M.S. thesis, 88 p. - Rix, C. C., 1953, Geology of Chinati Peak Quadrangle, Presidio County, Trans-Pecos Texas: Austin. University of Texas, unpublished Ph.D. dissertation, 188 p. - Sargent, K. A., and Bedinger, M. S., 1985, Geologic and hydrologic characterization and evaluation of the Basin and Range province relative to the disposal of high-level radioactive waste--Part II, Geologic and hydrologic characterization: U.S. Geological Survey Circular 904-B, [in press]. - St. John, B. E., 1965, Geologic map of Black Gap area, Brewster County, Texas: Austin, University of Texas, Bureau of Economic Geology Geologic Quadrangle Map 30, scale 1:62,500. - Sharp, J. E., 1979, Cave Peak, a molybdenum-mineralized breccia pipe complex in Culberson County, Texas: Economic Geology, v. 74, no. 3, p. 517-534. - Smith, M. A., 1975, Geology and trace element geochemistry of the Fort Davis area, Trans-Pecos Texas: Austin. University of Texas, unpublished Ph.D. dissertation, 231 p. - Thomann, W. F., 1981, Ignimbrites, trachytes, and sedimentary rocks of the Precambrian Thunderbird Group, Franklin Mountains, El Paso, Texas: Geological Society of America Bulletin, v. 92, no. 2. p. 94-100. - Twiss, P. C., 1959, Geology of Van Horn Mountains, Texas: Austin, University of Texas, Bureau of Economic Geology Geologic Quadrangle Map 23, scale 1:48,000. - Underwood, J. R., Jr., 1963, Geology of Eagle Mountains and vicinity, Hudspeth County, Texas: Austin, University of Texas, Bureau of Economic Geology Geologic Quadrangle Map 26, scale 1:48,000. - Wightman, R. B., 1953, Geology of Valentine area, Jeff Davis County, Texas: Austin, University of Texas, unpublished M.S. thesis, 89 p. - Wise, H. M., 1977, Geology and petrology of igneous intrusions of northern Hueco Mountains, El Paso and Hudspeth Counties, Texas: El Paso, University of Texas, unpublished M.S. thesis, 47 p. - Yates, R. G., and Thompson, G. A., 1959, Geology and quicksilver deposits of the Terlingua district, Texas: U.S. Geological Survey Professional Paper 312, 114 p.